3.1115 \(\int \frac{\cos ^{\frac{3}{2}}(c+d x) (A+C \sec ^2(c+d x))}{(a+a \sec (c+d x))^2} \, dx\)

Optimal. Leaf size=161 \[ \frac{2 (5 A+C) \text{EllipticF}\left (\frac{1}{2} (c+d x),2\right )}{3 a^2 d}-\frac{(7 A+C) E\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{a^2 d}-\frac{(7 A+C) \sin (c+d x) \cos ^{\frac{3}{2}}(c+d x)}{3 a^2 d (\cos (c+d x)+1)}+\frac{2 (5 A+C) \sin (c+d x) \sqrt{\cos (c+d x)}}{3 a^2 d}-\frac{(A+C) \sin (c+d x) \cos ^{\frac{5}{2}}(c+d x)}{3 d (a \cos (c+d x)+a)^2} \]

[Out]

-(((7*A + C)*EllipticE[(c + d*x)/2, 2])/(a^2*d)) + (2*(5*A + C)*EllipticF[(c + d*x)/2, 2])/(3*a^2*d) + (2*(5*A
 + C)*Sqrt[Cos[c + d*x]]*Sin[c + d*x])/(3*a^2*d) - ((7*A + C)*Cos[c + d*x]^(3/2)*Sin[c + d*x])/(3*a^2*d*(1 + C
os[c + d*x])) - ((A + C)*Cos[c + d*x]^(5/2)*Sin[c + d*x])/(3*d*(a + a*Cos[c + d*x])^2)

________________________________________________________________________________________

Rubi [A]  time = 0.381212, antiderivative size = 161, normalized size of antiderivative = 1., number of steps used = 7, number of rules used = 7, integrand size = 35, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.2, Rules used = {4114, 3042, 2977, 2748, 2639, 2635, 2641} \[ \frac{2 (5 A+C) F\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{3 a^2 d}-\frac{(7 A+C) E\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{a^2 d}-\frac{(7 A+C) \sin (c+d x) \cos ^{\frac{3}{2}}(c+d x)}{3 a^2 d (\cos (c+d x)+1)}+\frac{2 (5 A+C) \sin (c+d x) \sqrt{\cos (c+d x)}}{3 a^2 d}-\frac{(A+C) \sin (c+d x) \cos ^{\frac{5}{2}}(c+d x)}{3 d (a \cos (c+d x)+a)^2} \]

Antiderivative was successfully verified.

[In]

Int[(Cos[c + d*x]^(3/2)*(A + C*Sec[c + d*x]^2))/(a + a*Sec[c + d*x])^2,x]

[Out]

-(((7*A + C)*EllipticE[(c + d*x)/2, 2])/(a^2*d)) + (2*(5*A + C)*EllipticF[(c + d*x)/2, 2])/(3*a^2*d) + (2*(5*A
 + C)*Sqrt[Cos[c + d*x]]*Sin[c + d*x])/(3*a^2*d) - ((7*A + C)*Cos[c + d*x]^(3/2)*Sin[c + d*x])/(3*a^2*d*(1 + C
os[c + d*x])) - ((A + C)*Cos[c + d*x]^(5/2)*Sin[c + d*x])/(3*d*(a + a*Cos[c + d*x])^2)

Rule 4114

Int[(cos[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*((a_) + (b_.)*sec[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (C_.)*sec[(e_.)
 + (f_.)*(x_)]^2), x_Symbol] :> Dist[d^(m + 2), Int[(b + a*Cos[e + f*x])^m*(d*Cos[e + f*x])^(n - m - 2)*(C + A
*Cos[e + f*x]^2), x], x] /; FreeQ[{a, b, d, e, f, A, C, n}, x] &&  !IntegerQ[n] && IntegerQ[m]

Rule 3042

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_.)*((A_.) + (C_.)*s
in[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[(a*(A + C)*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*(c + d*Sin[e + f*x
])^(n + 1))/(f*(b*c - a*d)*(2*m + 1)), x] + Dist[1/(b*(b*c - a*d)*(2*m + 1)), Int[(a + b*Sin[e + f*x])^(m + 1)
*(c + d*Sin[e + f*x])^n*Simp[A*(a*c*(m + 1) - b*d*(2*m + n + 2)) - C*(a*c*m + b*d*(n + 1)) + (a*A*d*(m + n + 2
) + C*(b*c*(2*m + 1) - a*d*(m - n - 1)))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, A, C, n}, x] &&
NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && LtQ[m, -2^(-1)]

Rule 2977

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(e_
.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[((A*b - a*B)*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*(c + d*Sin[e + f*x]
)^n)/(a*f*(2*m + 1)), x] - Dist[1/(a*b*(2*m + 1)), Int[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^(n -
1)*Simp[A*(a*d*n - b*c*(m + 1)) - B*(a*c*m + b*d*n) - d*(a*B*(m - n) + A*b*(m + n + 1))*Sin[e + f*x], x], x],
x] /; FreeQ[{a, b, c, d, e, f, A, B}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && LtQ
[m, -2^(-1)] && GtQ[n, 0] && IntegerQ[2*m] && (IntegerQ[2*n] || EqQ[c, 0])

Rule 2748

Int[((b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[c, Int[(b*S
in[e + f*x])^m, x], x] + Dist[d/b, Int[(b*Sin[e + f*x])^(m + 1), x], x] /; FreeQ[{b, c, d, e, f, m}, x]

Rule 2639

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticE[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ[{
c, d}, x]

Rule 2635

Int[((b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> -Simp[(b*Cos[c + d*x]*(b*Sin[c + d*x])^(n - 1))/(d*n),
x] + Dist[(b^2*(n - 1))/n, Int[(b*Sin[c + d*x])^(n - 2), x], x] /; FreeQ[{b, c, d}, x] && GtQ[n, 1] && Integer
Q[2*n]

Rule 2641

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticF[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ
[{c, d}, x]

Rubi steps

\begin{align*} \int \frac{\cos ^{\frac{3}{2}}(c+d x) \left (A+C \sec ^2(c+d x)\right )}{(a+a \sec (c+d x))^2} \, dx &=\int \frac{\cos ^{\frac{3}{2}}(c+d x) \left (C+A \cos ^2(c+d x)\right )}{(a+a \cos (c+d x))^2} \, dx\\ &=-\frac{(A+C) \cos ^{\frac{5}{2}}(c+d x) \sin (c+d x)}{3 d (a+a \cos (c+d x))^2}+\frac{\int \frac{\cos ^{\frac{3}{2}}(c+d x) \left (-\frac{1}{2} a (5 A-C)+\frac{3}{2} a (3 A+C) \cos (c+d x)\right )}{a+a \cos (c+d x)} \, dx}{3 a^2}\\ &=-\frac{(7 A+C) \cos ^{\frac{3}{2}}(c+d x) \sin (c+d x)}{3 a^2 d (1+\cos (c+d x))}-\frac{(A+C) \cos ^{\frac{5}{2}}(c+d x) \sin (c+d x)}{3 d (a+a \cos (c+d x))^2}+\frac{\int \sqrt{\cos (c+d x)} \left (-\frac{3}{2} a^2 (7 A+C)+3 a^2 (5 A+C) \cos (c+d x)\right ) \, dx}{3 a^4}\\ &=-\frac{(7 A+C) \cos ^{\frac{3}{2}}(c+d x) \sin (c+d x)}{3 a^2 d (1+\cos (c+d x))}-\frac{(A+C) \cos ^{\frac{5}{2}}(c+d x) \sin (c+d x)}{3 d (a+a \cos (c+d x))^2}+\frac{(5 A+C) \int \cos ^{\frac{3}{2}}(c+d x) \, dx}{a^2}-\frac{(7 A+C) \int \sqrt{\cos (c+d x)} \, dx}{2 a^2}\\ &=-\frac{(7 A+C) E\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{a^2 d}+\frac{2 (5 A+C) \sqrt{\cos (c+d x)} \sin (c+d x)}{3 a^2 d}-\frac{(7 A+C) \cos ^{\frac{3}{2}}(c+d x) \sin (c+d x)}{3 a^2 d (1+\cos (c+d x))}-\frac{(A+C) \cos ^{\frac{5}{2}}(c+d x) \sin (c+d x)}{3 d (a+a \cos (c+d x))^2}+\frac{(5 A+C) \int \frac{1}{\sqrt{\cos (c+d x)}} \, dx}{3 a^2}\\ &=-\frac{(7 A+C) E\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{a^2 d}+\frac{2 (5 A+C) F\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{3 a^2 d}+\frac{2 (5 A+C) \sqrt{\cos (c+d x)} \sin (c+d x)}{3 a^2 d}-\frac{(7 A+C) \cos ^{\frac{3}{2}}(c+d x) \sin (c+d x)}{3 a^2 d (1+\cos (c+d x))}-\frac{(A+C) \cos ^{\frac{5}{2}}(c+d x) \sin (c+d x)}{3 d (a+a \cos (c+d x))^2}\\ \end{align*}

Mathematica [C]  time = 6.73211, size = 1355, normalized size = 8.42 \[ \text{result too large to display} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[(Cos[c + d*x]^(3/2)*(A + C*Sec[c + d*x]^2))/(a + a*Sec[c + d*x])^2,x]

[Out]

((-7*I)*A*Cos[c/2 + (d*x)/2]^4*Csc[c/2]*Sec[c/2]*(A + C*Sec[c + d*x]^2)*((2*E^((2*I)*d*x)*Hypergeometric2F1[1/
2, 3/4, 7/4, -(E^((2*I)*d*x)*(Cos[c] + I*Sin[c])^2)]*Sqrt[(2*(1 + E^((2*I)*d*x))*Cos[c] + (2*I)*(-1 + E^((2*I)
*d*x))*Sin[c])/E^(I*d*x)]*Sqrt[1 + E^((2*I)*d*x)*Cos[2*c] + I*E^((2*I)*d*x)*Sin[2*c]])/((3*I)*d*(1 + E^((2*I)*
d*x))*Cos[c] - 3*d*(-1 + E^((2*I)*d*x))*Sin[c]) - (2*Hypergeometric2F1[-1/4, 1/2, 3/4, -(E^((2*I)*d*x)*(Cos[c]
 + I*Sin[c])^2)]*Sqrt[(2*(1 + E^((2*I)*d*x))*Cos[c] + (2*I)*(-1 + E^((2*I)*d*x))*Sin[c])/E^(I*d*x)]*Sqrt[1 + E
^((2*I)*d*x)*Cos[2*c] + I*E^((2*I)*d*x)*Sin[2*c]])/((-I)*d*(1 + E^((2*I)*d*x))*Cos[c] + d*(-1 + E^((2*I)*d*x))
*Sin[c])))/((A + 2*C + A*Cos[2*c + 2*d*x])*(a + a*Sec[c + d*x])^2) - (I*C*Cos[c/2 + (d*x)/2]^4*Csc[c/2]*Sec[c/
2]*(A + C*Sec[c + d*x]^2)*((2*E^((2*I)*d*x)*Hypergeometric2F1[1/2, 3/4, 7/4, -(E^((2*I)*d*x)*(Cos[c] + I*Sin[c
])^2)]*Sqrt[(2*(1 + E^((2*I)*d*x))*Cos[c] + (2*I)*(-1 + E^((2*I)*d*x))*Sin[c])/E^(I*d*x)]*Sqrt[1 + E^((2*I)*d*
x)*Cos[2*c] + I*E^((2*I)*d*x)*Sin[2*c]])/((3*I)*d*(1 + E^((2*I)*d*x))*Cos[c] - 3*d*(-1 + E^((2*I)*d*x))*Sin[c]
) - (2*Hypergeometric2F1[-1/4, 1/2, 3/4, -(E^((2*I)*d*x)*(Cos[c] + I*Sin[c])^2)]*Sqrt[(2*(1 + E^((2*I)*d*x))*C
os[c] + (2*I)*(-1 + E^((2*I)*d*x))*Sin[c])/E^(I*d*x)]*Sqrt[1 + E^((2*I)*d*x)*Cos[2*c] + I*E^((2*I)*d*x)*Sin[2*
c]])/((-I)*d*(1 + E^((2*I)*d*x))*Cos[c] + d*(-1 + E^((2*I)*d*x))*Sin[c])))/((A + 2*C + A*Cos[2*c + 2*d*x])*(a
+ a*Sec[c + d*x])^2) - (40*A*Cos[c/2 + (d*x)/2]^4*Csc[c/2]*HypergeometricPFQ[{1/4, 1/2}, {5/4}, Sin[d*x - ArcT
an[Cot[c]]]^2]*Sec[c/2]*(A + C*Sec[c + d*x]^2)*Sec[d*x - ArcTan[Cot[c]]]*Sqrt[1 - Sin[d*x - ArcTan[Cot[c]]]]*S
qrt[-(Sqrt[1 + Cot[c]^2]*Sin[c]*Sin[d*x - ArcTan[Cot[c]]])]*Sqrt[1 + Sin[d*x - ArcTan[Cot[c]]]])/(3*d*(A + 2*C
 + A*Cos[2*c + 2*d*x])*Sqrt[1 + Cot[c]^2]*(a + a*Sec[c + d*x])^2) - (8*C*Cos[c/2 + (d*x)/2]^4*Csc[c/2]*Hyperge
ometricPFQ[{1/4, 1/2}, {5/4}, Sin[d*x - ArcTan[Cot[c]]]^2]*Sec[c/2]*(A + C*Sec[c + d*x]^2)*Sec[d*x - ArcTan[Co
t[c]]]*Sqrt[1 - Sin[d*x - ArcTan[Cot[c]]]]*Sqrt[-(Sqrt[1 + Cot[c]^2]*Sin[c]*Sin[d*x - ArcTan[Cot[c]]])]*Sqrt[1
 + Sin[d*x - ArcTan[Cot[c]]]])/(3*d*(A + 2*C + A*Cos[2*c + 2*d*x])*Sqrt[1 + Cot[c]^2]*(a + a*Sec[c + d*x])^2)
+ (Cos[c/2 + (d*x)/2]^4*Sqrt[Cos[c + d*x]]*(A + C*Sec[c + d*x]^2)*((8*(3*A + C + 4*A*Cos[c])*Csc[c])/d + (16*A
*Cos[d*x]*Sin[c])/(3*d) - (4*Sec[c/2]*Sec[c/2 + (d*x)/2]^3*(A*Sin[(d*x)/2] + C*Sin[(d*x)/2]))/(3*d) + (8*Sec[c
/2]*Sec[c/2 + (d*x)/2]*(3*A*Sin[(d*x)/2] + C*Sin[(d*x)/2]))/d + (16*A*Cos[c]*Sin[d*x])/(3*d) - (4*(A + C)*Sec[
c/2 + (d*x)/2]^2*Tan[c/2])/(3*d)))/((A + 2*C + A*Cos[2*c + 2*d*x])*(a + a*Sec[c + d*x])^2)

________________________________________________________________________________________

Maple [B]  time = 2.59, size = 437, normalized size = 2.7 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(d*x+c)^(3/2)*(A+C*sec(d*x+c)^2)/(a+a*sec(d*x+c))^2,x)

[Out]

-1/6*((2*cos(1/2*d*x+1/2*c)^2-1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(16*A*cos(1/2*d*x+1/2*c)^8+12*A*cos(1/2*d*x+1/2*c
)^6+20*A*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))*
cos(1/2*d*x+1/2*c)^3+42*A*cos(1/2*d*x+1/2*c)^3*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)*
EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))+12*C*cos(1/2*d*x+1/2*c)^6+4*C*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d
*x+1/2*c)^2+1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))*cos(1/2*d*x+1/2*c)^3+6*C*cos(1/2*d*x+1/2*c)^3*(sin(
1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))-48*A*cos(1/2*d
*x+1/2*c)^4-20*C*cos(1/2*d*x+1/2*c)^4+21*A*cos(1/2*d*x+1/2*c)^2+9*C*cos(1/2*d*x+1/2*c)^2-A-C)/a^2/cos(1/2*d*x+
1/2*c)^3/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/sin(1/2*d*x+1/2*c)/(2*cos(1/2*d*x+1/2*c)^2-1)^(1
/2)/d

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (C \sec \left (d x + c\right )^{2} + A\right )} \cos \left (d x + c\right )^{\frac{3}{2}}}{{\left (a \sec \left (d x + c\right ) + a\right )}^{2}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^(3/2)*(A+C*sec(d*x+c)^2)/(a+a*sec(d*x+c))^2,x, algorithm="maxima")

[Out]

integrate((C*sec(d*x + c)^2 + A)*cos(d*x + c)^(3/2)/(a*sec(d*x + c) + a)^2, x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{{\left (C \cos \left (d x + c\right ) \sec \left (d x + c\right )^{2} + A \cos \left (d x + c\right )\right )} \sqrt{\cos \left (d x + c\right )}}{a^{2} \sec \left (d x + c\right )^{2} + 2 \, a^{2} \sec \left (d x + c\right ) + a^{2}}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^(3/2)*(A+C*sec(d*x+c)^2)/(a+a*sec(d*x+c))^2,x, algorithm="fricas")

[Out]

integral((C*cos(d*x + c)*sec(d*x + c)^2 + A*cos(d*x + c))*sqrt(cos(d*x + c))/(a^2*sec(d*x + c)^2 + 2*a^2*sec(d
*x + c) + a^2), x)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)**(3/2)*(A+C*sec(d*x+c)**2)/(a+a*sec(d*x+c))**2,x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (C \sec \left (d x + c\right )^{2} + A\right )} \cos \left (d x + c\right )^{\frac{3}{2}}}{{\left (a \sec \left (d x + c\right ) + a\right )}^{2}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^(3/2)*(A+C*sec(d*x+c)^2)/(a+a*sec(d*x+c))^2,x, algorithm="giac")

[Out]

integrate((C*sec(d*x + c)^2 + A)*cos(d*x + c)^(3/2)/(a*sec(d*x + c) + a)^2, x)